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Foreword

The scope of “Tools and Techniques for Verification of System Infrastructure”
(TTVSI) is described by the organisers with the following statement.

Today’s increasingly computer-based society is dependent on the cor-
rectness and reliability of crucial infrastructure, such as programming
languages, compilers, networks, and microprocessors. One way to achieve
the required level of assurance is to use formal specification and proof,
and tool support for this approach has steadily grown to the point where
the specification and verification of important system infrastructure is
now feasible.

This infrastructure creates and runs the computers and communication net-
works that underlie our world. It can be looked at from a number of perspectives:

– underlying scientific ideas and methods such as logic and mathematics;
– specific theories that support the design of algorithms, protocols etc;
– designs and implementations (hardware and software) that provide services;
– tools that are used to design, build, validate and deploy implementations.

An area where all these are illustrated is the infrastructure needed to main-
tain the security of online identity and commerce. The underlying theory includes
properties of elliptic curves from algebraic geometry, which provide a founda-
tion for the design of cryptographic techniques. Elliptic curve calculations are
performed on phones in the course of routine communications. The properties
that are relied on by cryptography are very challenging for theorem proving:
only recently did Laurent Théry succeed in proving the associativity of addition
of elliptic curves using Coq (a challenge posed by Joe Hurd). This may seem
like an abstruse achievement, but in fact it is a crucial result needed for veri-
fying properties of encryption systems. The mechanisation of pure mathematics
is not an ivory tower activity: it is needed to develop tools for establishing the
trustworthiness of concrete devices like phones.

Support for security is only one of many kinds of infrastructure, but all
kinds require a combination of science, mathematics, logic and engineering. The
design of electronic systems for controlling an aircraft (or automobile or train or
medical device) shares with security the need for mathematical theories, though
the details of the mathematics differs. The tools used to create and validate
designs and their implementations must be trustworthy and the only way to
achieve this is to use a rigorous and scientific approach.

The TTVSI organisers have assembled a stunning array of speakers from
universities, research laboratories and industry around the world. Presentations
range from abstract theory to concrete implementation methods.

I would like to thank Joe, Konrad and Richard for organising this amazing
occasion. It is a great honour for me and my family and I hope it will be an
inspirational and exciting scientific event for you.

Mike Gordon, University of Cambridge
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Preface

A research leader’s legacy is not only his or her own research, but also the
students and other people he or she has mentored and inspired. As represen-
tatives of Mike Gordon’s students and Research Associates we have pleasure
in presenting these proceedings as a record of the event to mark Mike’s 60th
birthday and several decades as a leader in his field.

It was Mike’s wish for this event to be research focussed, and we have en-
deavoured to achieve that. We would like to thank all of the invited speakers for
agreeing to speak, the poster contributors, and the sponsors of TTVSI, namely
University of Cambridge, Galois Inc., and Lemma 1 Ltd, whose support we grate-
fully acknowledge. We are also grateful to the Royal Society for allowing us to
host this event at its premises in London.

Our thanks also to Caroline Matthews, Tom Melham, Andrew Pitts and
Carol Speed for their help. Carol and Caroline took on considerable extra work
to make this event possible.

Last, but by no means least, we would like to thank Mike himself, whose
work we are here to acknowledge. We echo Robin Milner’s belief that there is
still more to come!

We hope all of the participants find the presentations and discussions stim-
ulating and go away with new ideas and renewed enthusiasm for their research.

Richard Boulton, Icera Inc.
Joe Hurd, Galois Inc.
Konrad Slind, University of Utah
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Memories and Reflections for Mike Gordon

Robin Milner

University of Cambridge

It is an honour and a pleasure to take part in the event to celebrate Mike
Gordon’s career (so far; because we expect there is more to come). My memories
are about what we did together thirty years ago. My reflections are on what
will appear, thirty years hence, to have been the impact of machine-assisted
reasoning—especially on computer science itself.

Of course, my main interaction with Mike was in the development of LCF
and ML. The LCF system came into being for two reasons. First, I was excited
about Scott’s domain theory, in particular because you could express both syntax
and semantics in Scott’s logic for domains, so you ought to be able to prove a
compiler correct. Second, when I arrive at John McCarthy’s AI lab at Stanford
in 1971 there was great concern that someone in the lab should write some
software embodying some theory (thus proving that theory is virtuous), in order
to loosen the purse strings of funding agencies; my just-mentioned enthusiasm
and my new-boy status led me to volunteer . . . .

At that time I was impressed by the polarisation of existing software for
formal proof. At one pole was the superb work on Automath, by de Bruijn
and his group, which checked your own proof construction; at the other pole
was the superb development of fully automatic proof based upon Robinson’s
resolution principle. Surely there was something in between, which was more
than taking half of each of these? Malcolm Newey, Richard Weyrauch and I
worked in this middle region, and found some embryonic tactics (not really
needing a meta language to express them), notably for simplification. We did
a few proofs, including the major part of a correctness proof for a very simple
compiler. And at just the right time I had to leave Stanford for Edinburgh, so
this gave the opportunity for a fresh start.

In Edinburgh from 1974, Malcolm and I—joined by Lockwood Morris—
started again, with the obscure idea that you would drive the proof finding
in the very functional language whose semantics fits so well in domain theory.
We did the first ML implementation, and more—but not many more—proofs.
After a year or so my good luck in finding good people persisted at full strength;
along came Mike Gordon and Chris Wadsworth. Mike wrote the first semantics
of ML in Scott-Strachey style; Chris did a great job of structuring our theories.

Meanwhile, Mike must have been wondering when this great battleship would
go to sea and fight some real battles. This was, I think, the real beginning of
useful machine-assisted proving, in systems which provably can produce nothing
(of the right type) but proofs. Mike observed that there was one kind of proving
that our system could do all by itself: simplification by equations. He also ob-
serves that correctness of hardware circuits is expressed equationally, and that
(therefore) 99% of a hardware correctness proof is by simplification. This was
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the killer application that got LCF off the ground. Another thing that got it off
the ground was that my student, one Avra Cohn, had to share a room with a
stranger: Michael Gordon.

At this point—around 1980—I would like to go fast-forward three decades.
We have many wondeful proof systems, and a good few have adopted the LCF
principle of a meta-type system that ensured validity of proof. Increasingly, dif-
ficult results—old and new—are achieved with these systems. Everyone can see
that they are gaining strength year by year. I have done almost no more work
in this direction, but I value enormously the experience of doing it thirty years
ago, with far-sighted people like Mike Gordon. Instead I have been developing
theories of computation. In particular, I work with models of interactive pro-
cesses that are beginning to be useful in the real world of ubiquitous computing,
business processing and even biology. Informatic systems are getting bigger and
bigger; correspondingly, in order to understand them, the models that we need to
build are not only numerous, but increasingly complex. And, as the human race
becomes more critically dependent upon informatic artefacts, the relationships
between these models, in what I am calling the Tower of Informatic Models,
are in greater and greater need of ratification.

I would like to end this note with a conjecture: that, although machine-
assisted proof will continue to work in the service of mathematics and other
sciences, its main applicability will be in ratifying the tower of informatic mod-
els. I know from my own experience that theorems in this region, though not
profound mathematically, are an essential part of a profound development of
computer science. Like the proof of compiler correctness (indeed, that is one of
them!), they are rather straightforward. These proofs will not merely be applied
after a model is developed; they will be part of the model-developer’s tool kit.

Let me give just one example from my experience. In 1980 I developed CCS,
a Calculus of Communicating Systems, which is a specific calculus of interactive
processes. In the past five years I have developed a generic process calculus,
based upon a kind of graph. To justify part of the claim that this calculus
in indeed generic, I have ‘proved’ that it recovers the theory of CCS in the
following sense: two CCS processes are behaviourally equivalent if and only if
their representatives in the generic calculus are equivalent. This proof is detailed,
not profound, and quite possibly incorrect (in, one hopes, only minor detail!).
My work in developing the generic calculus would have been greatly helped if a
proof assistant had been at my finger tips.

So it is not just the correctness of reasoning, but the methodology of theory
development, that is going to gain from the forward march of HOL, Isabelle and
other similarly advanced proof engines. The fine state of these systems is due
to the insight, courage and technical prowess of a select band of designers. Mike
Gordon has been in the vanguard of this group from the beginning.
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Synthesizing Implementations
Using a Theorem Prover

Mike Gordon
University of Cambridge

I will discuss the use of theorem proving as a way to create implementations
(both hardware and software) that are guaranteed to be correct. The talk will
contain a historical perspective, an account of some current work and then a
general discussion leading to challenges for the future.

Using theorem proving to synthesize implementations is a very old idea.
About forty years ago researchers at Stanford (Green and Yates) and Carnegie
Mellon University (Waldinger) independently showed that a program to imple-
ment a relational input-output specification R(x, y) could be extracted from a
first-order resolution proof of ∀x.∃y.R(x, y) where the axioms used for the proof
specify the programming language for the implementation. This idea was the
starting point for much fruitful research on deductive program synthesis.

Another approach is to prove ` ∀x.∃y.R(x, y) in a constructive logic and
then extract a function f from the proof such that ∀x.R(x, f(x)). Unlike the
first-order resolution method that aimed to be fully automatic, the constructive
logic theorems are proved with human guidance using a proof assistant such as
Nuprl (Constable) or Coq (Huet and Coquand).

I will discuss some recent and current work at Cambridge and the University
of Utah that has aspects of both these methods. The general idea is that, given
a specification S, one proves a theorem ` Implements(I, S) for an appropriate
predicate Implements. This theorem is generated automatically from S and con-
tains the desired implementation I as a sub-term. As well as delivering I, the
theorem certifies that I meets the specification S. The similarity with the early
program synthesis work is that synthesis is automatic and is the side effect of
a theorem prover run. However it differs in that the specification S is more al-
gorithmic (a functional program rather than a set of clauses), so generating the
theorem resembles compilation and doesn’t need artificial intelligence. The sim-
ilarity with the constructive logic method is that for each S we essentially do a
constructive proof of ` ∃I.Implements(I, S), though the witness I is built explic-
itly by a programmed proof strategy, rather than being an implicit consequence
of doing proofs in a constructive system.

The proof of an implementation theorem ` Implements(I, S) can use a num-
ber of techniques. One method is to prove a sequence of refinement theorems:
` Implements(I1, S) ∧ ` Implements(I2, I1) ∧ · · · ∧ ` Implements(In, I).
Another method, called translation validation, is to use an unverified com-
piler to create I from S and then to invoke a theorem prover to establish
` Implements(I, S). A third approach is to use a verified compiler C which has
been proved to satisfy the general theorem: ` ∀S.Implements(C(S), S). These
three techniques have differing pragmatic trade-offs. A verified compiler is the
best, but proving the compiler correct may be a challenge. Translation valida-
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tion can in principle be used with off-the-shelf compilers, but generating the
validations may be hard.

The Utah-Cambridge work has been exploring combinations of translation
validation and refinement. The overall flow from specification S to implementa-
tion I is by proving a sequence of theorems that refine S to I, but particular
refinement steps ` Implements(Im+1, Im) may be accomplished either by apply-
ing logical rules (e.g. rewriting Im) or by conventional compilation of Im to
Im+1, followed by a translation validation. I will discuss examples illustrating
both hardware and software synthesis.

This work synthesizes implementations from specifications written directly
in logic. This raises the question of whether raw logic is a good specification
language. Many theorem proving systems have logics that contain terms corre-
sponding to functional programs: ACL2 supports an applicative subset of Com-
mon Lisp; PVS, the various HOL proof assistants, Isabelle, Coq and Nuprl all
have terms that correspond to programs in a typed higher order functional pro-
gramming language. The question, therefore, is related to the utility of languages
like Lisp, Scheme, ML or Haskell and, furthermore, whether there is value in hav-
ing a way to create guaranteed-correct implementations from specifications in
these languages.

There is plenty of evidence that functional programming is useful, but only
a subset of applications need high assurance of implementation correctness. The
application area we have investigated is implementing the arithmetic operations
needed for cryptography in both hardware and machine code.

Programs written in real world functional languages like ML and Haskell
should be easier to reason about than programs in imperative languages. How-
ever, the Milner-Tofte-Harper semantics of Standard ML, though truly an amaz-
ing achievement, is probably too complex to be a basis for the mechanical verifi-
cation of ML programs and, as far as I know, Haskell has no complete mathemat-
ical description (though fragments of it do). The functional languages that live
inside theorem provers are designed to be suitable for proof, but are primitive.
There is a danger that the overlap between real-world functional programming
and tractable-for-theorem-proving functional programming is small.

To encourage research in high assurance functional programming it would
be valuable to have a tool-independent language with an explicit mathematical
definition simple enough to support theorem proving. Programs written in this
could then be analysed using PVS, HOL, ProofPower, Isabelle, Coq, Nuprl etc.
The way ACL2 created a tractable language from Common Lisp is an inspiring
model. Can a tractable language be created from Haskell or ML, or are they too
semantically complex? Scott Owens’ fully formalized semantics of OCaml light
(a subset of OCaml) is thought-provoking. It is intended “to be a suitable sub-
strate for the verification of OCaml programs”, but is much more complex than
the native languages inside existing theorem provers. It may be that adding
new programming-oriented terms to higher order logic is an easier way to get
a tractable language than simplifying existing programming languages. Both
approaches are worth pursuing and maybe they will eventually meet.
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Proof Search Debugging Tools in ACL2

Matt Kaufmann1 and J Strother Moore2

1 Department of Computer Sciences, University of Texas at Austin, Austin, TX
78712, USA,

kaufmann@cs.utexas.edu,
WWW home page: http://cs.utexas.edu/users/kaufmann

2 Department of Computer Sciences, University of Texas at Austin, Austin, TX
78712, USA,

moore@cs.utexas.edu

WWW home page: http://cs.utexas.edu/users/moore

Suppose the ACL2 [2] user wishes to prove that reversing a list three times
is equivalent to reversing it once, a theorem called triple-rev below.

(defthm triple-rev

(equal (rev (rev (rev a)))

(rev a)))

The ACL2 user might think through the argument informally as follows. (We
follow ACL2 syntax by using a semicolon (‘;’) to start a comment up to the end
of the line.)

Reversing a list twice is an identity. So (rev (rev a)) rewrites to a and
we’re done.

To formalize and mechanize this, I’ll prove the key lemma, double-
rev, (rev (rev x)) = x, and have ACL2 use that as a rewrite rule.

Then, when I ask the system to prove triple-rev, it will automati-
cally apply the rewrite rule to the underlined subterm below and reduce
the left-hand side of triple-rev to the right-hand side:

(rev (rev (rev a))) ; lhs of triple-rev

=

(rev a) ; rewritten lhs

=

(rev a) ; rhs of triple-rev

Q.E.D.

Note that this hypothetical user invents double-rev and then thinks about
how to make ACL2 use it automatically. An alternative would be for ACL2 to
require the user to provide a detailed proof.

The basic philosophy behind the ACL2 system is that it should be as auto-
matic as possible, guided by rules derived from definitions and theorems that
have already been certified by the system. This is empowering for several rea-
sons. The user is not responsible for soundness: rules in the data base are vetted
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by the system using already vetted rules. The user is relieved of much tedious
detail: terms and patterns in the goal conjecture trigger the application of vetted
rules and the system does this quickly and accurately. In essence, the ACL2 user
strives to develop a general and powerful collection of rules for manipulating the
concepts in a given class of problems. This gives the system the flexibility often
to tolerate minor changes in previously checked work. For example, if ACL2 can
prove some property of function f and then the definition of f is undone and
modified in some slight way so that the property still holds, ACL2 is often able
to discover the proof “again.” (We put the word in quotes because the two proofs
are different because the two fs are different.) Because models of hardware and
software are often modified to reflect changing designs, this ability to “replay”
proofs automatically is important.

Returning to the triple-rev example, a problem with the ACL2 approach
is revealed when we realize that double-rev is not a theorem! One can read the
prover’s output to discover that (rev (rev x)) is not x if x is a list structure
that terminates with a non-nil value. The formula imagined by our hypothetical
user is not valid; for example, if x is 7, (rev (rev x)) is nil, not 7. An accurate
formalization of double-rev is

(defthm double-rev

(implies (true-listp x)

(equal (rev (rev x))

x))).

While this particular mistake could be avoided in a strongly typed system, it
illustrates a very common class of mistakes: missing hypotheses. Having discov-
ered this correction to double-rev we ought to rethink its intended use in the
bigger proof we are constructing.

But people are sloppy. Working top down to prove some main theorem
(e.g., triple-rev) we invent or remember “lemmas” (e.g., the faulty version
of double-rev) without getting them exactly right. We imagine the operation
of the rules derived from these faulty lemmas and design proof sketches based on
these powerful rules. Then we set out to formalize our thinking. In interaction
with a theorem prover, we debug statements of our lemmas and catch all the
little mistakes. But in the heat of the chase, we forget to carry what we learn
back to our main proof sketch. When we finally try to check the main proof, the
actual rules carry us astray. The proof fails.

Furthermore, since each newly conjectured lemma requires a proof, the gen-
eral state of affairs is that the user is in a deep recursive descent through a tree
of conjectures rooted in an imagined proof of the main one. Many theorems have
been accurately stated and proved while many others remain to be. At any one
time, the user is working on the next lemma or theorem and is expecting its
formal proof to follow the previously imagined sketch.

In a case like triple-rev – where only one new lemma is involved – it might
be easy to remember to modify the main theorem or its proof. But in interesting
proofs about hardware and software, hundreds of crucial properties and relations
might be involved and it is simply impossible to keep them all in mind.
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It is illusory to think that the problem is avoided by working bottom up or
with a goal manager. Formalization and symbolic manipulation are inevitably
carried out late in whatever intellectual process occurs as we think about a given
formal challenge. The early stage of proof discovery is necessarily informal since
often we must invent concepts that are nowhere formalized or even expressed.
There will often be a gap between this early informal stage, where mistakes often
occur, and its subsequent mechanized formalization.

It is also illusory to think the problem is solved by printing out everything
the system is doing. To give the reader a feel for the size of the problem, consider
Liu’s M6 model of the Java Virtual Machine [3]. The model is about 160 pages of
ACL2 and includes all JVM data types except floats. It models multi-threading,
dynamic class loading, class initialization, and synchronization via monitors. We
have a data base of about 5,000 rules designed primarily to allow us to construct
a proof about an invariant on the class table under dynamic class loading. But
the rules are also sufficient to allow us to prove the correctness of simple JVM
bytecode programs.

The system can “automatically” prove the correctness of the bytecode pro-
duced by the Sun Microsystems javac compiler for

public static int fact(int n){
if (n>0)

{return n*fact(n-1);}
else return 1;

}.

The statement of correctness is that when the program runs on a non-negative
32-bit Java int, n, it terminates and returns the (possibly negative) integer
represented in twos-complement notation by the low-order 32-bits of n!. Here,
n! is the true mathematical value of factorial. To prove this, the system does an
induction on n and attempts to apply the 5,000 named rules in its data base. It
tries a total of about 63,215 applications to terms in the problem. Only about half
are useful. Many of these applications are on branches of the proof search that are
ultimately pruned (e.g., simplification done while backchaining on unsuccessful
paths). The actual proof involved 180 different rules. The entire search takes 2
seconds on a 2 GHz Intel Core Duo running ACL2 built on SBCL Common Lisp.
Furthermore, the system can tolerate minor correctness-preserving changes to
the bytecode.

ACL2 prints a description of the evolving proof attempt, but the printed
steps are very large. For example, one formula, which takes 67 lines to print, is
reported in real time to have simplified to the conjunction of 11 formulas. The
11 formulas take a total of 6,886 lines to print – over 100 pages. This single
simplification step is justified by the combined application of 162 different rules.
When ACL2 fails or ceases printing, the user can get a rough idea of how things
went by navigating through this proof output using text processing tools like
Emacs.

The Method described in [1] for debugging failed proofs involves inspecting
certain critical subgoals, called checkpoints, and looking for subterms within
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them that should have been simplified by known rules or that suggest the need
for new rules, keeping in mind the informal proof sketch for the goal.

It is not surprising that with so many rule applications and such large formu-
las, it can be difficult for the user to debug failed proofs. Proof search debugging
tools are necessary.

References
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A Bit of Social Choice Theory in HOL:
Arrow and Gibbard-Satterthwaite

Tobias Nipkow

Institut für Informatik, Technische Universität München

In 1950, Kenneth Arrow, co-recipient of the 1972 Nobel Prize in Economics,
proved his famous impossibility theorem [1] about voting systems: under certain
minimal plausible fairness conditions, the only voting system left is a dictator-
ship. In 1973, Gibbard [4] and Satterthwaite [7] independently proved a similar
result where nonmanipulabiliy forces a dictatorship. These two theorems are
closely related staples of social choice theory [8] and numerous proofs for them
have been given in the literature. Yet logicians, as usual, have found fault with
(some of) these proofs: “The standard and textbook proofs of Arrow’s general
impossibility theorem are, like the original proofs, invalid.” [6]. This was written
30 yeasr ago but is still valid. In this paper I formalize some recently published
proofs of Arrow’s theorem [2, 3, 5] in HOL and find that in places they still suffer
from opaqueness and missing cases. Then I derive Gibbard-Satterthwaite from
Arrow; here the standard construction appears to be free of holes.
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Decision Procedures for Parametric Theories

Sava Krstić1, Amit Goel1, Jim Grundy1, and Cesare Tinelli2

1 Strategic CAD Labs, Intel Corporation
2 Department of Computer Science, The University of Iowa

Formal methods for hardware or software development require checking va-
lidity (or, dually, satisfiability) of formulas in logical theories modeling relevant
datatypes. Satisfiability procedures have been devised for the basic ones—reals,
integers, arrays, lists, tuples, queues, and so on—especially when restricted to
formulas in some some quantifier-free fragment of first-order logic. Thanks to a
seminal result by Nelson and Oppen, these basic procedures can often be mod-
ularly combined to cover formulas that mingle several datatypes.

Most research on Satisfiability Modulo Theories (SMT) has traditionally used
classical first-order logic as a foundation for defining the language of satisfiabil-
ity procedures, or SMT solvers, and reasoning about their correctness. However,
the untypedness of this most familiar logic is a major limitation. It unneces-
sarily complicates correctness arguments for combination methods and restricts
the applicability of sufficient conditions for their completeness. Unsurprisingly,
researchers have recently begun to frame SMT problems directly in terms of
typed logics, and to develop combination results for these logics. Ahead of the
theory, solvers supporting the PVS system, solvers of the CVC family, and some
others adopted a typed setting early on.

The SMT-LIB standardization initiative also proposes a version of many-
sorted first-order logic as an initial underlying logic for SMT. We see this as
a step in the right direction, but only the first one, because the many-sorted
logic’s rudimentary type system is still inadequate for working with typical cases
of combined theories and their solvers. For example, in this logic one can define
a generic theory of lists using a sort List for the lists and the sort E for the list
elements. Then, a theory of integer lists can be defined formally as the union
of the list theory with the integer theory, modulo the identification of the sort
E with the integer sort of the second theory. This combination mechanism gets
quickly out of hand if we want to reason about, say, lists of arrays of lists of
integers, and it cannot be used at all to specify arbitrarily nested lists. Because
of the frequent occurrence of such combined datatypes in verification practice,
this is a serious shortcoming.

Fortunately, virtually all structured datatypes arising in formal methods are
parametric, the way arrays or lists are. Combined datatypes like those mentioned
above are constructed simply by parameter instantiation. For this reason, we be-
lieve that the logic for SMT should directly support parametric types and, con-
sequently, parametric polymorphism. Our main contribution is a Nelson-Oppen-
style framework and results for theories combinable by parameter instantiation.

The key concept of parametric theory can likely be defined in various logics
with polymorphic types, most easily in the higher-order logic of the HOL family
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ΣEq = 〈Bool | =α2
→Bool, ite[Bool,α,α]→α, trueBool, falseBool,¬Bool→Bool,∧Bool2→Bool, . . .〉

ΣUF = 〈⇒ |@[α⇒β,α]→β〉

ΣInt = 〈Int | 0Int, 1Int, (−1)Int, . . . , +Int2→Int,−Int2→Int,×Int2→Int,≤Int2→Bool, . . .〉

Σ× = 〈× | 〈-, -〉[α,β]→α×β
, fstα×β→α, sndα×β→β〉

ΣArray = 〈Array |mk arrayβ→Array(α,β), read[Array(α,β),α]→β , write[Array(α,β),α,β]→Array(α,β)〉

ΣList = 〈List | cons[α,List(α)]→List(α), nilList(α), head[List(α),α]→Bool, tail[List(α),List(α)]→Bool〉

Fig. 1. Signatures for theories of some familiar datatypes. The constants’ arities are
shown as superscripts. ΣEq contains the type operator Bool and standard logical con-
stants. All other signatures by definition implicitly contain ΣEq. In ΣUF, the symbol UF

is for uninterpreted functions and the intended meaning of @ is the function application.
The list functions head and tail are partial, so are represented as predicates.

of theorem provers. For the syntax, the simple notion of a theory’s signature is
central. A signature consists of a set of type operators and a set of constants
over this set of operators, as illustrated in Figure 1. Each theory is defined
by its semantics—the meaning of type operators as functions that take sets as
arguments and produce sets as results, and the meaning of constants as indexed
families of functions. (The meaning of cons is the family {consE |E is a set}.)

The meanings of type operators and constants must be parametric just like
the List constructor and the family {consE} are parametric. There is an easily
perceived uniformity in the way parametric operators and constants compute
their results “making no assumptions on their arguments”, but the concept is not
easy to pin down exactly. We use a definition similar to Reynolds parametricity
in programming languages.

We can prove that complete solvers for several signature-disjoint theories
(sharing only symbols in ΣEq) can be used in the Nelson-Oppen style to produce
a complete solver for the combined theory.

A striking outcome of this result is that in practically oriented SMT research
that deals with common datatypes, the vexatious stable infiniteness condition of
the traditional Nelson-Oppen approach does not need to be mentioned. Its role is
played by a milder flexibility condition that we prove is automatically satisfied for
all parametric theories. Thus, our combination results do not subsume existing
results nor are subsumed by them. Our results apply more widely because most
of the datatypes relevant in applications are described by theories that satisfy our
parametricity requirements without necessarily satisfying the stable infiniteness
requirements of other combination methods. Our main result about combination
of multiple pairwise disjoint parametric theories would be difficult even to state
in many-sorted languages, because, as mentioned, many-sorted logic is not well-
suited for working with elaborate combinations of theories, while in a logic with
parametric types such combinations are straightforward.
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A Framework for
Algorithm Level Hardware Modelling

Ziyad Hanna and Tom Melham

Oxford University Computing Laboratory
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This talk describes work in progress that addresses the increasing challenges of
functional validation of computer hardware, typified by modern microarchitec-
ture designs. The growing size and complexity of such systems is outstripping
current testing methods, and functional validation has become the main chal-
lenge computer engineers face in producing correct and high quality systems [1].

An architecture’s design model, expressed at register transfer level, usually
serves as its de facto specification. It is typically a very detailed model, expressed
at a low level of abstraction involving physical design aspects. Validating the
design model is very time consuming, because it is entangled with so much non-
functional detail—and because the designs themselves are very complex.

Abstraction is commonly invoked to deal with this complexity. The conven-
tional idea is to write abstract, high-level models that exclude implementation
details to focus on specification and validation. But in practise a high-level model
usually serves as a reference for driving further elaboration of the design, as well
as for functional validation. It has therefore tended to compromise its role in
functional validation by including details driven by implementation concerns.
The model’s level of abstraction is dragged down, until at some point it is no
longer justifiable to maintain it in parallel with the design model. The high-level
model is then abandoned, wasting the costly effort spent on its construction.

Another drawback is the lack of a formal link between the high-level model
and the design model. Validation work done on a high-level model typically has
to be repeated on the design model, so the return on investment in maintaining
a high-level model becomes suspect.

The aim of our work is to devise a framework for abstract modelling and high-
level validation focusing solely on the algorithms in our designs, and to assess
the contribution to functional correctness that this strict focus can provide. The
semantics of our models is based on Abstract State Machines [2, 5], a natural
framework for hardware models. Algorithm-level models with this semantics are
expressed at a high level of description in a hardware-oriented adaptation of
AsmL [6], an executable object-oriented language with rich data types.

The framework we propose provides for both formal property verification,
to verify functional correctness of our models, and refinement verification, to
connect them through a chain of correctness preserving refinements to design
models and ultimately to implementations. It is intended that verification of the
refinement relationship between the most detailed model in our framework and
the design model will be be done using the assertion program approach [7] to
GSTE model checking [8].
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This talk describes some of the details of our proposed framework, focusing
on our implementation of the Asml-based modelling language. Our starting point
was to write an interpreter for AsmL-S [6], a simplified version of AsmL with
a clearly-defined operational semantics. This was then extended with hardware-
specific datatypes and provided with a symbolic simulation facility to underpin
verification and refinement.

Although object-oriented in presentation, AsmL is quite naturally embedded
in a typed functional setting, in which abstract state is represented mathemat-
ically by the elements of types, or sets, and the model’s specification of the
transitions between states is represented by a function that computes collec-
tions of state updates. We have therefore expressed the published semantics of
AsmL within a mechanized, but mathematically-precise, language of functions
and types—namely the reFLect functional programming language [4]. Abstract
data types are represented by reFLect types; the current state of a model is repre-
sented by a collection of (named) values from these types; the transition system
is represented by a function that computes updates to the state; and a run of
the system is represented by the sequence of successive abstract states.

By situating our semantics in a functional language, we provide a well-defined
and directly executable semantics similar in spirit to an embedding in the HOL
logic [3]. By using reFLect’s inbuilt reflection features, we do this in a way that
merges the ‘deep’ and ‘shallow’ embedding approaches that have been so exten-
sively investigated in theorem proving research. Values in our system are also
represented using reFLect’s reflected term language, providing a foundation for
verification reasoning by symbolic simulation.

References

1. Bob Bentley. Validating a modern microprocessor. In Computer Aided Verification:
17th International Conference, volume 3576 of LNCS. Springer Verlag, 2005.

2. Egon Börger and Robert Stark. Abstract State Machines. Springer-Verlag Berlin
Heidelberg, 2003.

3. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press, 1993.

4. Jim Grundy, Tom Melham, and John O’Leary. A reflective functional language
for hardware design and theorem proving. Journal of Functional Programming,
16(2):157–196, March 2006.

5. Yuri Gurevich. Evolving algebras: An attempt to discover semantics. In G. Rozen-
berg and A. Salomaa, editors, Current Trends in Theoretical Computer Science,
pages 266–292. World Scientific, River Edge, NJ, 1993.

6. Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. Semantic essence of
AsmL. Theor. Comput. Sci., 343(3):370–412, 2005.

7. Edward Smith. A method for generation of GSTE assertion graphs. In Robert Jones
and Ian Harris, editors, High-Level Design Validation and Test Workshop, 2005.
Tenth IEEE International, volume 10, pages 160–167. IEEE Computer Society, 2005.

8. Jin Yang and Carl-Johan H. Seger. Generalized symbolic trajectory evaluation -
abstraction in action. In Mark Aagaard and John W. O’Leary, editors, Proceedings
of the 4th International Conference on Formal Methods in Computer-Aided Design,
volume 2517 of LNCS, pages 70–87. Springer, 2002.

14
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Formal verification of software, using static analysis, model checking, pro-
gram proof and combinations of these techniques, is slowly getting acceptance
in the critical software industry, for example in the case of “fly-by-wire” sys-
tems and smart card software. Unlike testing, formal verification can not only
show the presence of bugs, but also the absence of whole classes of bugs. To
fully realize this potential, however, it is necessary to establish trust in (1) the
verification tools themselves (either via tool verification or production of veri-
fiable evidence) and (2) the execution path that leads from the source code of
the program or the model thereof used for verification to actual execution of
the program. The latter path is long and convoluted, typically involving code
generation (from a model written in a domain-specific language), compilation to
assembly language (including code optimization passes), assembling and linking
to produce machine code, on-the-fly translation of machine code to elementary
operations of the processor’s micro-architecture, and execution of these opera-
tions by hardware circuits. All these steps are potential sources of errors that
may cause correct programs to execute incorrectly.

As part of the Compcert project1, we have been working on the formal verifi-
cation of a moderately-optimizing compiler for a large subset of the C language
down to assembly language for the PowerPC processor [1–3]. Using the Coq
proof assistant, we proved a semantic preservation theorem for each pass of
the compiler, therefore guaranteeing that the assembly code produced behaves
as prescribed by the semantics of the source program. This implies that any
property of the observable behavior of the source program carries over to the
generated code. Moreover, most of the compiler itself is written directly in the
functional subset of the Coq specification language, from which executable Caml
code is automatically extracted.

Theorem proving has also been successfully applied to lower layers of the pro-
gram execution stack. Moore’s Piton project [4] proves end-to-end correctness
between the Piton assembly-level language and the NDL netlist implementing
the FM9001 custom microprocessor. More recently, Fox [5] used HOL to ex-
press a full formal specification of the ARM instruction set and to verify the
correctness of the ARM6 micro-architecture – an implementation of the ARM
architecture that is very widely used in embedded systems. This result is im-
pressive and, as one of its outcomes, provides an invaluable resource: a fully

1 http://compcert.inria.fr/
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formal specification, validated by the correctness proof for a micro-architecture,
of a real-world processor architecture – something that processor manufacturers
have consistently failed to provide so far.

Much verification work remains to be done on hardware architectures, com-
pilers, code generators, verification tools, and their interfaces. Of particular in-
terest to us is the combination of program provers with verified code generation
technology. One approach that we have started to investigate is a fully trusted
execution path for programs written and proved correct in Coq, including the
verification of Coq’s code extraction mechanism, of a compiler for the mini-ML
programming language that is the target of this extraction, and of a run-time
system (GC and memory allocator) for this compiler. Another approach is the
prover-assisted code generation approach of Hurd et al [6].

The road towards high-assurance environments for program development,
verification and execution is long, but one thing is already clear: proof assistants
such as HOL, Isabelle, Coq, etc, have a crucial role to play in such an effort.
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1 Formalizing mathematics: pure and applied

I’ve always been interested in using theorem provers both for “practical” appli-
cations in formally verifying computer systems, and for the “pure” formalization
of traditional mathematical proofs. I particularly like situations where there is
an interplay between the two. For example, in my PhD thesis [5], written under
Mike Gordon’s supervision, I developed a formalization of some elementary real
analysis. This was subsequently used in very practical verification applications
[6], where in fact I even needed to formalize more pure mathematics, such as
power series for the cotangent function and basic theorems about diophantine
approximation.

I first joined Mike Gordon’s HVG (Hardware Verification Group) to work on
an embedding in HOL of the hardware description language ELLA. Mike had
already directed several similar research projects, and one concept first clearly
articulated as a result of these activities was the now-standard distinction be-
tween ‘deep’ and ‘shallow’ embeddings of languages [3]. Since I was interested
in formalizing real analysis, Mike encouraged me to direct my attention to case
studies involving arithmetic, and this was the starting-point for my subsequent
research. Right from the beginning, Mike was very enthusiastic about my for-
malization of the reals from first principles using Dedekind cuts. Mike had been
involved in Robin Milner’s group developing the original Edinburgh LCF [4],
a central feature of which was the idea of extending the logical basis with de-
rived inference rules to preserve soundness. Now that Mike had applied the LCF
approach to higher-order logic, suitable as a general foundation for mathemat-
ics, it was possible to extend this idea and even develop mathematical concepts
themselves in a ‘correct by construction’ way using definitions. So a definitional
construction of the reals fitted in very well with the ideals Mike had for the
HOL project, an interest in applications combined with an emphasis on careful
foundations that has now become commonplace.

In this paper I want to describe a formalization that was undertaken purely
for fun, involving complex analysis [8] and culminating in a proof of the Prime
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Number Theorem. Nevertheless, it doesn’t seem entirely far-fetched to imagine
some “practical” applications of this result in the future. For example a weak
form of the PNT is implicitly used to justify the termination of the breakthrough
AKS primality test [1], and some simpler properties of prime numbers have been
used in the verification of arithmetical algorithms by the present author [7]. But
I certainly don’t need to give any such justification, because Mike Gordon, as
well as introducing me to the fascinating world of theorem proving, has always
placed a welcome emphasis on doing “research that’s fun”.

2 Mathematical machinery versus brute force

Formalizing the PNT in itself is not a new accomplishment, since that has al-
ready been done very impressively by a team led by Jeremy Avigad [2]. However,
that formalization was of the so-called “elementary” Erdös-Selberg proof — ele-
mentary in the sense that no higher analysis is used, not in the sense of simplicity.
The usual proof in analytic number theory textbooks relies on Cauchy’s residue
theorem from complex analysis, and the fact that there are no zeros of the Rie-
mann ζ-function for <z ≥ 1. This analytic proof in itself is simpler and clearer
than the elementary one, but at the price of requiring much more mathematical
“machinery” as a precondition. For this reason, Robert Solovay has suggested
an analytic proof of the PNT as a good challenge in the formalization of math-
ematics [12]. In the full version of this paper we plan to give a more detailed
comparison of the elementary and analytic proofs and expand on some of the
issues briefly sketched below.

Of course, it might sometimes make sense to play to the particular strengths
of computer theorem provers by using a different proof from the one that humans
might find appealing; cf. the comments in [13]. For example, see the proof of the
Kochen-Specker paradox from quantum mechanics, worked out as an extended
example in the present author’s HOL Light tutorial. In presenting the proof in-
formally, one would naturally reduce the number of cases by cleverly exploiting
symmetry, whereas with a theorem prover it’s simpler just to run through the
cases by brute force. For a more challenging example, consider proving the asso-
ciativity of the chord-and-tangent addition operation on elliptic curves. This has
been done formally in Coq by Laurent Théry and Guillaume Hanrot [10], with
some of the key parts using enormous algebraic computations that were on the
edge of feasibility; indeed similar computational issues have obstructed a related
project by Joe Hurd. When I mentioned the practical difficulties caused by this
example to Dan Grayson, he suggested a more ‘human-oriented’ proof:

But why not enter one of the usual human-understandable proofs that
+ is associative? Too many prerequisites from algebraic geometry? [. . . ]
The proof I like most is to use the Riemann-Roch theorem to set up a
bijection between the rational points of an elliptic curve and the elements
of the group of isomorphism classes of invertible sheaves of degree 0.
That’s a lot of background theory, probably too much for this stage of
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development, but then the “real” reason for associativity is that tensor
product of R-modules is an associative operation up to isomorphism.

Indeed, it seems to the present author that formalizing mathematical machin-
ery on that level is probably still many years away. So it is slightly depressing to
reflect that we may be forced to formalize unnatural or ‘hacky’ proofs because
not enough people are working on the systematic development of general math-
ematical machinery. The work reported in this paper is modest by comparison
with the reasoning mentioned in that quotation, but still it represents a small
step in the direction of formalizing non-trivial proofs in analytic number theory
in the style of a mainstream textbook or research paper.

3 Formalizing Newman’s proof of the PNT

There are numerous different analytic proofs of the PNT, but there seems to be a
general consensus that an approach developed by Newman, just using Cauchy’s
integral formula for a simple bounded contour, is the simplest known. We took
as our text to formalize the book by Newman himself [9], more specifically the
“second proof” on pp. 72-74 using the analytic lemma on pp. 68-70. While New-
man writes in a friendly and accessible style, he sometimes assumes quite a lot of
background or leaves some non-trivial steps to the reader. The overall PNT proof
naturally splits up into five parts, which are presented by Newman in somewhat
distinct styles and with widely varying levels of explicitness.

1. The Newman-Ingham “Tauberian” analytical lemma.
2. Basic properties of the Riemann ζ-function and its derivative, including the

Euler product.
3. Chebyshev’s elementary proof that

∑

p≤n
log p

p
− log n is bounded.

4. Application of analytic lemma to get summability of
∑

n(
∑

p≤n
log p

p
−log n−

c)/n for some constant c.
5. Derivation from that summability that

∑

p≤n
log p

p
− log n tends to a limit.

6. Derivation of the PNT from that limit using partial summation.

We have compared the main parts of our formalization against reverse-
engineered TeX for corresponding passages in Newman’s book (thanks to Freek
Wiedijk for composing these!) The de Bruijn factor [11], the size ratio of the
gzipped formal proof text versus the gzipped TeX (gzipped for a crude approxi-
mation to ‘information content’), varies widely:

Part of proof dB factor
1 Analytical lemma 8.2
2 ζ-function 81.3
3 Chebyshev bound 28.2
4 Summability 11.0
5 Limit 5.4
6 PNT 30.4
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It is commonly found that the de Bruijn factor for typical formalizations is
about 4, so these are very high. However, the really high figures are for parts
where Newman is not really giving a proof in any sense. The quotations that
follow are the sum total of Newman’s text for parts 2, 3 and 6, which take over
half of the 4939 lines in the complete HOL Light formalization. In no cases can
Newman’s passage really be called a proof, so the comparison is hardly fair:

2 Let us begin with the well-known fact about the ζ-function: (z − 1)ζ(z) is
analytic and zero free throughout <z ≥ 1.

3 In this section we begin with Tchebyshev’s observation that
∑

p≤n
log p

p
−

log n is bounded, which he derived in a direct elementary way from the prime
factorization on n!

6 The point is that the Prime Number Theorem is easily derived from
‘
∑

p≤n
log p

p
− log n converges to a limit’ by a simple summation by parts

which we leave to the reader.

If we restrict ourselves to parts 1, 4 and 5, the de Bruijn factor is about 8, still
higher than normal, but not outrageously so. And indeed, although the proof
did not present any profound difficulties, we found that it took more time to
formalize Newman’s text than we have grown to expect for other formalizations.
This may indicate that Newman’s style is fairly terse and leaves much to the
reader (this does seem to be the case), or that in this area, we sometimes have
to work hard to prove things that are obvious informally (this is certainly true
for the winding number of the contour mentioned later). For instance, a simple
transformation in part 4, reversing the order of summation in this double series
for <z > 1, needed to be justified by a proof, even if not a very difficult one,
whereas it is simply posited without comment by Newman:

f(z) =
∞
∑

n=1

1

nz

(

∑

p≤n

log p

p

)

=
∑

p

log p

p

[

∑

n≥p

1

nz

]

.

To give something of the flavour of the proof, the centerpiece of Newman’s
approach is the analytical lemma; this is the only part that uses non-trivial facts
about the complex numbers and is thus the locus of the analytical ‘machinery’:

Theorem. Suppose |an| ≤ 1, and form the series
∑

ann−z which clearly
converges to an analytic function F (z) for <z > 1. If, in fact, F (z) is
analytic throughout <z ≥ 1, then

∑

ann−z converges throughout <z ≥ 1.

The proof involves applying Cauchy’s integral formula round a contour and
then performing some careful estimations of the sizes of the various line integrals
involved. The contour we use, traversed counterclockwise, is shown in figure 1;
this is slightly different from Newman’s (using horizontal straight-line segments
rather than continuing the arc of the circle), though only because we found
it easier to understand informally, not because of any particular problem of
formalization. The place where formalization presents a striking contrast with
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Fig. 1. Contour used in application of Cauchy’s integral theorem

informal perception is that in order to apply Cauchy’s integral formula, one must
verify that the winding number of this contour, formally

1

2πi

∫

γ

dz/z

is indeed 1, indicating that the curve winds exactly once round the origin coun-
terclockwise. Intuitively this is obvious. When formalized in the right way, it
is not difficult, but it needs some systematic general lemmas about winding
numbers of composite paths.

Nevertheless, despite these reservations, the proof presents no fundamental
problems and we finally derive the Prime Number Theorem. The usual informal
statement is that π(n) ∼ n/ log(n), where π(x) denotes the number of prime
numbers ≤ x and ‘∼’ indicates that the ratio of the two sides tends to 1 as
n → ∞. In our HOL formalization we do not use the auxiliary concepts π(x)
and ‘∼’ (though we easily could), but spell things out, where ‘&’ is the type cast
N → R:

|- ((\n. &(CARD {p | prime p /\ p <= n}) / (&n / log(&n)))

---> &1) sequentially
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10. L. Théry and G. Hanrot. Primality proving with elliptic curves. In K. Schneider and
J. Brandt, editors, Proceedings of the 20th International Conference on Theorem
Proving in Higher Order Logics, TPHOLs 2007, volume 4732 of Lecture Notes in
Computer Science, pages 319–333, Kaiserslautern, Germany, 2007. Springer-Verlag.

11. F. Wiedijk. The de Bruijn factor. See http://www.cs.ru.nl/~freek/factor/,
2000.

12. F. Wiedijk. The Seventeen Provers of the World, volume 3600 of Lecture Notes in
Computer Science. Springer-Verlag, 2006.

13. L. Wos and G. W. Pieper. A Fascinating Country in the World of Computing:
Your Guide to Automated Reasoning. World Scientific, 1999.

22



Network Protocols: The Terror and the Glory
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Keith Wansbrough1

1University of Cambridge 2Intel Research 3NICTA, Canberra

The major network protocols that underpin the Internet, such as IP, UDP,
TCP, and so on, are remarkable in many ways. On the one hand, they work,
on the whole, very well. They originated in the 1970s and 1980s, but thoughtful
initial design, and gradual improvements, have allowed the network to cope with
many orders of magnitude of expansion since then.

On the other hand, they are highly complex artefacts, and are specified only
by a combination of informal prose RFCs and the executable code of the various
deployed implementations (it is telling that one of the standard reference works
is essentially an annotated walkthrough of the source code of one implementa-
tion [1]). There is no precise definition of what the protocols are, or of what it
really means for them to work correctly. This complexity and imprecision has a
pervasive cost for those who must work with the protocols.

In this talk I will reflect on a line of work, from 2000–2008, in which we
produced precise specifications for UDP, TCP, and the Sockets API used by
applications to interact with them [2–7]. For TCP, we specified both the low-
level protocol, in terms of individual TCP segments on the wire, retransmission,
etc. [5, 6], and the functional specification of what the protocol should guarantee,
in terms of reliable byte streams [7].

Taking the deployed implementations as primary, the relationship between
the low-level specification and (selected) implementations was validated experi-
mentally, by testing that traces collected from an instrumented real-world net-
work were admitted by the specification. A precise abstraction function between
the two specifications was defined, and likewise experimentally validated. These
validations are a pragmatic alternative to full proof, which on this scale (tens of
thousands of lines of specification and code, multi-threaded and time-dependent)
would be challenging.

Throughout, the HOL proof assistant, developed by Mike Gordon and his
colleagues [8, 9], provided vital tool support. Our specifications are expressed
in HOL, and our validation process involves special-purpose symbolic evaluators
within HOL, automatically producing, for each real-world trace, a fully expansive
proof that that trace is admitted by the specification.

This work shows how the complexities of extant real-world systems infras-
tructure can be addressed with machine-supported semantics. However, the de-
ployed base of the existing protocols makes it hard to simplify that complexity.
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For newly designed systems, where protocol design, specification, testing, and
proof can be intertwined, one might hope to have even greater benefits from rig-
orous specifications, and at much less cost. As an experiment along these lines, we
specified a MAC protocol for the SWIFT optically switched network, in collabo-
ration with the network and protocol designers [10], validating the specification
against their FPGA and ns2 implementations. Working at design-time, rather
than 30 years after the fact, did indeed bring the expected benefits.

Together, these works confirm that working rigorously with real-world system
designs, using tools such as HOL, is both feasible and desirable. There remains
a cultural problem, of how one can stimulate the formation of the mixed collab-
orations that are needed for such work, to introduce rigorous semantics at the
early stages of system design.
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Proving and Computing:
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One of most satisfying aspect of proof systems like Coq [7] is the capability
to combine proving and computing freely. Programs are purely functional with
a syntax close enough to Ocaml [5]. Following LCF style, proofs are built us-
ing tactics but internally consist in exhibiting an object (a program) of a given
type. This type represents the proposition to be proved. Altogether, this gives
a very simple framework where proving and computing are unified. In this pre-
sentation, we show how this combination is crucial in order to get an effective
way of certifying the primality of relatively large numbers with a very high level
of confidence. Also, we believe that this application illustrates four interesting
aspects of using proof systems to do formal verifications.

First of all, with respect to formal verification, we are in an ideal situation.
Defining what a prime number is can be done in 5 definitions only: one for
natural numbers, one for addition, one for multiplication, one for divisibility,
and finally one for primality. So no matter how elaborate our techniques to
assert primality are, the statement we prove at the end is always of the form
prime p, so fundamentally depends of these 5 definitions only.

Second, we have tried to minimise as much as possible the proving part. The-
orem proving is a time consuming activity and the evaluation of our programs
inside the prover is an order of magnitude slower than the one of real-life pro-
gramming languages. Instead of trying to find prime numbers, we only check
inside the prover that a given number is prime. Furthermore, we make intensive
use of certificates, generated outside the prover, to simplify this checking phase.
For primality, there exists a variety of certificates [1]. Pocklington certificates
are used for numbers n such that n − 1 can be easily factorised. Lucas test is
the most effective way of proving primality of Mersenne numbers, i.e. numbers
of the form 2p − 1. Finally, elliptic curves are used for arbitrary numbers [3].

Third, this application gave us the opportunity to revisit in a formal setting
some standard purely functional datastructures [6]. The definition of primality
uses Peano numbers to represent natural numbers. For example, 3 is represented
as (S (S (S O))). This unary representation has the advantage of simplicity
but is almost useless for computing. Representing numbers as lists of booleans
is a bit better. Still, some simple operations like getting the leading bit requires
linear time. In our application, we use binary trees to represent numbers instead.
This gives the possibility to apply divide-and-conquer strategies to implement the
usual arithmetic operations. For example, multiplication is implemented using
the well-known Karatsuba algorithm [4].
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Finally, formalising certificates based on elliptic curves has revealed to be a
non-trivial task. The actual problem is in proving that an elliptic curve with
the usual composition law forms a group. In particular, the associativity of this
law is the difficult part. For this, we took an elementary road that requires
some intensive polynomial computations [2] and amounts to developing a small
certified kernel of computer algebra system inside the prover. This illustrates
again the ubiquity of computing.
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Defining a C++ Semantics
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Introduction In 2005, I was approached by QinetiQ to write a semantics for C++

in the style of the C semantics I wrote for my PhD [2]. After some discussion,
we decided that I could concentrate on the dynamic semantics, and that I might
ignore as much of the (complicated) static semantics as I liked. In particular, I
decided that this allowed me to ignore the complicated rules for operator and
function overloading. This overloading is entirely resolved at compile-time and
might in this way be thought of as a static matter.

I did commit to describing multiple inheritance, exceptions, templates (for all
that these are also a “compile-time” feature), object lifetimes and namespaces.
This abstract highlights some of the issues encountered in performing this task.
The result of the commission was a document summarising the semantics, and
some 12 000 lines of HOL4 sources.

From Näıvety to Namespaces One can divide C’s variables into two sorts: stack-
allocated locals and globals of permanent lifetime. (A variable’s visibility is an
orthogonal issue.) Dynamically accessing a variable is simple: it must either be
a local, necessarily masking earlier locals and globals, or it is a global. Because
of this, a C semantics can maintain two maps for variables, its globals and
its current variables. When a function is entered, one sets the current map to
be the global map, and then subsequently updates this with any further local
variables (including function parameters) that are encountered, masking any
other variables of the same name.

In the presence of namespaces (or classes), this simplistic scheme falls apart.
Consider Figure 1: on entering function ns1::f, one cannot simply use the names
belonging to namespace ns1. Done incorrectly, this will change the x reference
in f to point to the wrong variable. When one includes the strange things that
happen to names in the presence of class declarations, the underlying semantics
becomes even more complicated. Eventually, this was modelled with an explicit
“name resolution” phase.

int x = 3; val x = ref 3

namespace ns1 { structure ns1 = struct

int f(int n) { return n + x; } fun f n = n + !x

int x = 2; val x = ref 2

} end

Fig. 1. C++ program (and SML equivalent) illustrating name resolution.
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Non-Interleaving Function Calls in a Small-step Style The C++ Standard [1]
(following C) insists on peculiar rules for the order of evaluation for expressions.
These effectively require that expression evaluation be defined in a small-step
style. Unfortunately, at the same time, the standard insists that function calls
do not interleave, which is easiest to capture in a big-step semantics. The earlier
C semantics in [2] merged these styles in an ugly way. The new C++ approach
uses a mixture of continuations and traditional recursion on the syntactic struc-
ture of expressions. This isn’t without its uglinesses; it’s possible that a purely
continuation-based approach would be cleaner. Unfortunately, continuations can
themselves introduce significant clutter, as well as some incomprehensibility.

Validation and Proofs: the Ghost at My Banquet The major problem with a
semantics as large as this one is that it is hard to judge its correctness. Proofs of
type soundness and progression are often used to provide some form of validation,
but in the absence of a good mechanisation of the type system, this option
was not available with this semantics. In the case of C++, the more important
question is whether or not the semantics corresponds to the “real” definition of
the language. There are no deep proofs in the semantics, but there are some
“sanity” theorems of various forms.

Other Features Two significant pieces of existing work enabled important parts of
the semantics to be taken “off the shelf”. In particular, the treatment of multiple
inheritance followed that given in the paper by Wasserrab et al [4]. The only
significant adjustment required when incorporating this material was to remove
the Java-style assumption that “everything is a pointer to something on the
heap”. Capturing the layout of objects with virtual ancestors was particularly
involved.

Secondly, the semantics also drew on the description of templates in Siek and
Taha [3]. C++ templates are one of the language’s most complicated features, and
are modelled as a separate phase that happens before any dynamic behaviour
occurs.
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Introduction. The idea of supporting interactive provers using automatic theo-
rem provers (ATPs) is an old one. An important early effort is the KIV system
[1], which has been integrated with 3TAP. Hurd has written his own resolution
prover, Metis, and integrated it with HOL4 [3].

The sledgehammer tool, introduced in Isabelle2007, largely eliminates the
need for problem preparation by automatically removing higher-order features
and collecting relevant lemmas before it calls ATPs. It exploits multi-core archi-
tectures.

Integration. Sledgehammer integrates Isabelle with the automatic provers E,
SPASS and Vampire. Other provers can easily be added to this list. Claire
Quigley implemented background processing so that users are not forced to
wait for a response. We have true “one-click” invocation: the system exam-
ines Isabelle’s full lemma library and selects lemmas that appear relevant to the
problem [5]. Higher-order problems are transformed into first-order ones using
a novel and effective translation [4]. We relied on systematic, extensive experi-
mentation to fine-tune many parameters of the system. This integration is both
original and highly usable.

Proof reconstruction. Proof reconstruction is based on Hurd’s Metis prover [3].
Susanto [6] integrated the Metis prover with Isabelle, including proof recon-
struction, following the existing HOL4 integration. Sledgehammer translates the
output produced by E, SPASS or Vampire and generates one or more Metis calls
that prove the required theorem. These proof scripts allow Isabelle to reconstruct
the proofs, and allow proofs to be re-run without repeating the expensive ATP
calls.

Relevance filtering. Jia Meng devised methods for selecting, from a huge lemma
library, the few lemmas relevant to a given problem [5]. Relevance filtering is nec-
essary because automatic provers deliver poor results when given the standard
lemma collection (consisting of a few hundred theorems) used with Isabelle’s
own automatic tools. We have developed and evaluated many strategies based
on occurrences of constants in lemmas. Our methods work well enough that we
can now use them with Isabelle’s full lemma library of 7000 theorems.
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Higher-order translations. Jia Meng examined many approaches to translating
higher-order problems to first-order logic [4]. The complexity of Isabelle’s type
system precludes using an untyped translation as Hurd did, so the question is
how much type information to retain. For the removal of λ-abstractions, we have
compared combinators with λ-lifting. We have succeeded in finding a translation
that delivers a good success rate.

Experiences. Sledgehammer cannot prove really difficult statements. It generally
proves theorems that are simple consequences of other theorems already in the
Isabelle library. Even this can replace an hour of tedious mental work. Thus it is
valuable for beginners, but some Isabelle veterans now depend on it. Concerning
future work, the clearest needs are support for arithmetic and integration with
the automatic higher-order theorem prover LEO-II [2].

Acknowledgements. Jia Meng, Claire Quigley and Kong Woei Susanto worked
for the project and made major contributions to it. The research was funded by
the epsrc grant GR/S57198/01 Automation for Interactive Proof.

References

1. Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, Wolfram Menzel, Wolfgang
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Which C Semantics to Embed in the Front-end
of a Formally Verified Compiler?

Sandrine Blazy
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We have been developing and formally verifying in Coq a moderately opti-
mising compiler (called Compcert) for a large subset of the C language. This
compiler comprises a back-end translating the Cminor intermediate language to
PowerPC assembly code [3] and a front-end translating the Clight subset of C
to Cminor. Clight features all the types and operators of C as well as all the
structured control statements of C, but excludes unstructured control.

We have re-architected a previous front-end [1] around the use of the CIL
library [2]. CIL provides an industrial-strength parser and type-checker for the
C language, as well as a simplifier that eliminates or explicates many features of
this language. CIL is written in Caml and is also used in other tools dedicated
to the verification of C programs. As CIL performs too many simplifications, we
have deactivated those that are not wanted in the context of a verified compiler.

Our formalisation of C in Coq has been extended in two ways. Firstly, the
abstract syntax describes a larger subset of C including the C struct and union

types as well as a limited switch statement. The representation of recursive
struct and union types relies on a fixpoint operator. The switch statement
is defined for the three languages of the front-end. Secondly, the semantics of
C is defined coinductively using natural semantics rules for divergence, thus
modelling non-terminating programs. The proofs of semantic preservation of the
front-end have also been reused and extended in order to handle these changes.

The main difficulty while designing our semantics of Clight was to find the
right level of abstraction between on the one hand a precise semantics enabling
the proof of correctness properties of non-trivial code transformations as per-
formed by a compiler, and on the other hand a semantics that is less strict than
the C standard. For example, thanks to an abstract memory model [4], some
popular violations of the C standard are specified in our semantics, but many
other violations cannot be accounted for. As a result of this work, the Compcert
compiler is now able to compile some realistic examples of C source code.
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Our computer-based society is dependent on the reliability of both computers
and their operators. Steps of a learned task can have properties that make them
hard to remember, triggering cognitive slip errors even when individuals have the
expert knowledge to perform a task. Manifestations include omission errors (e.g.,
forgetting the original after making photocopies), and mode errors (e.g., typing
with Caps Lock on). Most errors only result in minor annoyance but they can be
catastrophic in safety-critical situations. System infrastructure must be designed
to be tolerant of operator slips. Consequently formal verification technology must
be able to detect design problems that lead to systematic human error. To explore
these issues, we have combined formal verification with empirical investigation
of the causes of human error.

We initially developed a simple higher-order logic model of cognitively plau-
sible behaviour. It incorporated features of human behaviour such as reactive,
goal-based and termination behaviour embedded in a non-determinsitc frame-
work of action. A series of case studies showed that, even with a simple model,
a variety of systematic errors emerge that can be detected by automated veri-
fication tools, and that the model can be used to verify design rules. We have
further shown how to use the model in a scenario based way demonstrating
that various user classes (e.g., beginners and experts) can be represented using
different instantiations of the generic user model.

Our laboratory studies identified and manipulated workload variables that
influenced the strength of procedural and sensory cues. We found that if a cue was
not strong enough to trigger a subsequent step then slip errors were more likely.
The understanding gained led to a formulation of the abstract dependencies
between salience and cognitive load. We extended our user model based on this
formulation, using it as a tool to analyse the dependencies. The analysis yielded
more detailed dependencies in the form of formal, generic rules and thus a deeper
understanding of the experimental results. In particular, the new rules refine the
use of non-determinism, by introducing a hierarchy of choices governed by the
salience (strength) of procedural and sensory cues, and the level of cognitive
workload imposed by the task performed.

The refined model can be used to verify interactive systems with respect
to systematic human error in greater detail. The verification work has also sug-
gested areas where further experiments are needed to fill gaps in our understand-
ing of the causes of slips and so of the formal model. Thus the experimental and
verification work have been mutually beneficial, each leading to deeper insights
in the other.

? This research is funded by EPSRC grants GR/S67494/01 and GR/S67500/01. See
http://www.dcs.qmul.ac.uk/research/imc/hum/
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Defining Checkability Classes for CIL Bytecode
Extended Abstract
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Standard CIL bytecode is used in the Mono and .net systems [ECMA-334].
We use CIL to reflect the behaviour of embedded firmware so that interactions
between pervasive computing devices may be formally verified. We also embed
assertions in the bytecode that must hold when a device joins a community and
which can ensure safe operation under network failure.

In our approach, space is divided into domains and devices are prevented
from sending commands over the network in a domain until their internal ap-
plications, the canned application bundles, have been validated by a domain
manager. In order to do this, they offer an application digest which is a descrip-
tion of their active behaviour, so that automated reasoning techniques can be
run before granting a bundle the right to send commands. There are many po-
tential forms of application digest: we investigate the costs of reflecting the key
behaviour of the device using CIL (.net) bytecode, lightly embedded in XML,
over HTTP. Accompanying the program is a classification of the complexity of
the program. Currently, the complexity classification we are using is that the
program describes a finite state machine, and hence is of a coding style that
can be readily converted to a hardware logic design by certain toolchains used
in design automation. In the future, we expect complexities to be arranged in
a partial order, with a given automated checker at the domain manager being
able to check all programs below and including a given complexity. This assump-
tion motivates the use of CIL bytecode as the description language. Given the
relatively long lifetime of certain hardware devices, such as control valves and
television sets, we expect checking capabilities to grow greatly while they are
deployed. Using a scale of complexity profiles over a full language, such as CIL
bytecode, we provide futureproofness.

Our checker covers the major forms of network-level error, which arise from
lost packets, network segmentation and device disconnections. A related refine-
ment is network latency: where a safety condition is a function of conditions at
different locations, we can check consistency predicates of the make-before-break
and break-before-make form.

Our work contrasts with work that proves the correctness of individual net-
work protocols in isolation from the application behaviour. Our approach spots
feature and deadlock interactions between actual applications and is then refined
to encompass networking protocol errors. Although we have performed checks
by essentially converting the aggregate collection of applications into a global
LTS, reflection using CIL is sufficiently general that other forms of automated
reasoning are not precluded.
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Automatic Extraction of Computed Function
(for Verification of Machine Code)
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We have developed a total-correctness Hoare logic [3] which can be used to
reason about machine code. The Hoare logic has been instantiated to a detailed
model of the ARM instruction set [2]. We plan to also instantiate it to a detailed
model of x86 developed by Sarkar [1]. The logic has been used in automation [4],
which extracts the function computed by machine code, e.g. given the code:

L: cmp r1,#10 compare r1 with 10
subcs r1,r1,#10 subtract 10 from r1, if cmp gave 10 ≤ r1

bcs L jump to top, if cmp gave 10 ≤ r1

Symbolic simulation gives the following. Let r1 x assert: register 1 has value x.

x < 10 ⇒ { r1 x ∗ pc p } code { r1 x ∗ pc (p+12) }

10 ≤ x ⇒ { r1 x ∗ pc p } code { r1 (x−10) ∗ pc p }

A function f is constructed which mimics the effect of the code.

f(x) = if x < 10 then x else f(x−10)

We prove automatically that f executes the given code:

{ r1 x ∗ pc p } code { r1 f(x) ∗ pc (p+12) }

The proof uses the induction arising from the definition of f :

∀P. (∀x. (10 ≤ x ⇒ P (x−10)) ⇒ P (x)) ⇒ (∀x. P (x))

Our automation has been used in the proof of a Cheney garbage collector, which
we are currently integrating into a proof-producing compiler.
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1 University of Cambridge
2 INRIA

Ott [3] is a tool for writing definitions of programming languages and calculi.
It takes as input a definition of a language syntax and semantics, in a concise
and readable ASCII notation that is close to what one would write in informal
mathematics. It generates LATEX to build a typeset version of the definition, and
Coq, HOL, and Isabelle/HOL versions of the definition. Additionally, it can be
run as a filter, taking a LATEX/Coq/Isabelle/HOL source file with embedded
(symbolic) terms of the defined language, parsing them and replacing them by
target-system terms.

Most simply, the tool can be used to aid completely informal LATEX mathe-
matics. Here it permits the definition, and terms within proofs and exposition,
to be written in a clear, editable, ASCII notation, without LATEX noise. It gener-
ates good-quality typeset output. By parsing (and so sort-checking) this input,
it quickly catches a range of simple errors, e.g. inconsistent use of judgement
forms or metavariable naming conventions.

That same input can be used to generate formal definitions, for Coq, HOL,
and Isabelle. It should thereby enable a smooth transition between use of infor-
mal and formal mathematics. Additionally, the tool can automatically generate
definitions of functions for free variables, single and multiple substitutions, sub-
grammar checks (e.g. for value subgrammars), context application functions, and
binding auxiliary functions. (At present only a fully concrete representation of
binding is supported, without quotienting by alpha equivalence.)

The distribution includes several examples, in varying levels of completeness:
untyped and simply typed lambda-calculus, a calculus with ML polymorphism,
the POPLmark Fsub with and without records, an ML module system taken
from (Leroy, JFP 1996) and equipped with an operational semantics, and LJ, a
lightweight Java fragment. More substantially, Ott has been used for work on
LJAM: a Java Module System, by Rok Strnǐsa [2], and semantics for OCaml
light, by Scott Owens [1], both with mechanized soundness proofs.

1. Scott Owens. A sound semantics for OCaml light. In Proc. ESOP’08, 17th European
Symposium on Programming (Budapest), March/April 2008.

2. Rok Strnǐsa, Peter Sewell, and Matthew Parkinson. The Java Module System: core
design and semantic definition. In Proc. OOPSLA, 2007.

3. Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge,
Susmit Sarkar, and Rok Strnǐsa. Ott: Effective tool support for the working seman-
ticist. In Proc. ICFP, 2007.
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Programming languages such as C are beginning to be employed for hardware
development, since they are widely used in software development and many tools
are available. They also enable implementation of various design optimisations.

This poster presents work-in-progress on involving formal validation ap-
proaches in our tool chain for heterogeneous reconfigurable systems. The tool
chain supports mapping a design, captured in C, to a heterogeneous platform
containing an instruction processor, a digital signal processor, and an acceler-
ator based on field-programmable technology. Formal validation techniques are
explored in two aspects: the correctness of the optimised design with respect to
the original design, and the correctness of the optimisation rules themselves.

In our approach, an optimisation rule is specified in the language CML [1–3]
as a source-to-source transformation. A CML rule contains three parts: pattern,
condition, and result. Pattern is a description of the design before it is optimised.
Condition is the presumption that underpins the validity of the optimisation.
Result is a decription of the optimised design. We are investigating the use of an
interactive prover for validating the optimisation rules.

The optimisation rules are implemented in the CML compiler. Such rules
should only improve design performance, without changing its functional be-
haviour. CML transformations involve the use of annotations to capture the
optimisation. Our approach is based on methods for producing formal descrip-
tions [4, 5] of the design before and after optimisation, such that the behaviour
of such formal descriptions can be analysed by the ACL2 Symbolic Simulator.
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How to Prove False
Using the Variable Convention?
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Abstract. Bound variables play an important role in many branches
of formal methods. Nearly all informal proofs involving bound variables
make use of the variable convention. This poster shows by giving an ex-
ample that this convention is in general an unsound reasoning principle,
i.e. one can use it to prove false.

Summary of the Poster’s Content

The variable convention is perhaps one of the most frequently used reasoning
principles when reasoning informally about syntax involving binders. Barendregt
formulates this convention in his classic book as follows:

Variable Convention: If M1, . . . ,Mn occur in a certain mathematical
context (e.g. definition, proof), then in these terms all bound variables
are chosen to be different from the free variables.

However this convention is in general an unsound reasoning principle. To see
this, consider the following inductively defined (two-place) relation taking two
α-equated lambda-terms as arguments:

x 7→ x Var t1 t2 7→ t1 t2
App

t 7→ t′

λx.t 7→ t′
Lam

Note that the last rule reads “for all x, t and t′, if t 7→ t′ is in the relation,
then so is λx.t 7→ t′”. The following property can be “proved” using the variable
convention.

Faulty Lemma: Suppose t 7→ t′. If y 6∈ FV (t) then y 6∈ FV (t′).

“Proof” By induction on the inductive relation. The Var- and App-cases boil
down to straightforward implications.

In the Lam-case we have the induction hypothesis if y 6∈ FV (t) then y 6∈
FV (t′) and the assumption y 6∈ FV (λx.t). The goal is to show y 6∈ FV (t′). We
use the variable convention to infer that y 6= x where x is the bound variable
from λx.t and y is the free variable from the lemma. Using this fact, we know
that y 6∈ FV (λx.t) holds if and only if y 6∈ FV (t) holds. Hence we can use the
induction hypothesis to conclude also this case.

Counter Example: We can easily verify that λx.x 7→ x is in the relation and
x 6∈ FV (λx.x) holds. But x 6∈ FV (x) is clearly false.

Nominal Isabelle, a package for the theorem prover Isabelle, has enough in-
frastructure so that one can use the variable convention in formal proofs by
structural and rule induction, but in the latter case only for relations that are
variable convention compatible.

? This work arose from joint work with Michael Norrish, Stefan Berghofer and Randy
Pollack.
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Reasoning about Weak Memory Models
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The ARMv7 architecture defines a weakly consistent memory system. We
have formalized the ARM memory model in Coq, inspired by Mike Gordon’s
1993 unpublished work on formalizing the Alpha memory model in HOL.

In a weakly consistent memory model, the meaning of a program depends
upon the order in which accesses appear to be executed by an observer such as
a processor. Programmers can use barrier instructions to force this observability
order. The semantics of a data barrier is to define two groups of accesses, A
and B, on the executing processor Pe, and to require that all observers see all A
accesses before any B access. Group A accesses are defined to include, all memory
accesses that are observed by Pe before the data barrier. Group B accesses are
defined to include all memory accesses by Pe that occur in program order after
the data barrier.

A program is permissible if there exists an observability order in which: (1)
The order is a strict partial one; (2) The order complies with uniprocessor rules;
(3) Writes are serialized (4) The order complies with barrier semantics; (5) Every
read in a program is bound to the last write observed to the same location; (6)
A symbolic simulation of the program leaves memory in the same state as given
by the final reads.

Consider the following program, in which the shared variables x and y have
initial value 0. In the absence of barriers, this program is permissible, which
means that processors p2 and p3 have observed the stores from p1 in different
orders.

p1 p2 p3

a1: W x 1 b1: R y 1 c1: R x 1

a2: W y 1 b3: R x 0 c3: R y 0

The graph on the left gives a candidate ordering that illustrates this result. Now,
we can force a final p3:y=1 by inserting data barriers between b1 and b3, and
c1 and c3. This guarantees that p2 and p3 observe p1’s write to y before their
respective reads. That is, the program as given above is not permissible. This is
illustrated in the graph on the right, where the extra edges added by the data
barriers b2 (dotted arrows) and c2 (dashed arrows) create an observability cycle
between c3 and b3, and so fails the acyclic condition of permissibility.
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The ARM Instruction Set Architecture in HOL

Anthony Fox

University of Cambridge

The ARM instruction set architecture (version ARMv4T) has been formally
specified using the HOL4 system. The specification derives from, and has been
extensively validated by, a formal verification of the ARM6 micro-architecture,
which implements ARMv3. The model has a number of uses: it can be used in
the formal verification of other ARM micro-architectures (processor designs);
one can reason about and formally verify ARM machine code; and it provides
an excellent target for verified and verifying compilers. The high-fidelity ARM
model is feature complete and not simplified. The following are specified:

– all 32-bit ARMv4 instructions;
– all 16-bit Thumb instructions;
– all coprocessor instructions and the coprocessor interface;
– all processor modes (and associated registers); and
– all interrupts and exceptions.

ARM systems are modelled in HOL as modular circuits, which consist of ISA,
memory and coprocessor components. Functional specification is used to model
the ISA itself, which is treated as a finite state machine with input and output.
The approach avoids over-specification of the memory and, at the same time,
enables efficient (functional) evaluation.

A series of supporting tools have been developed. A parser and pretty printer
relate ARM assembler syntax, machine code and HOL terms. Evaluation in HOL
for ground terms (i.e. with no free variables in the state space) is supported,
enabling ARM programs to be loaded and run in a logically sound manner.
The EmitML tool has been used to generate a Standard ML version of the
specification. The SML code is compiled using MLton and this provides fast
evaluation (thousands of instructions per second) when running the specification
on sizeable programs.

A Hoare style logic for reasoning about machine code has been developed by
Magnus Myreen. This has been applied to the ARM model and used to verify
non-trivial assembler sub-routines. For example, one rule for addition is:

{R 15 p, R a , R b x, R c y}

p : ADD a b c

{R 15 (p + 4), R a (x + y), R b x, R c y}

Here, a, b and c are distinct 32-bit registers that are not the program counter
(register fifteen). Support for reasoning about machine arithmetic is provided by
HOL’s n-bit word library. Further tool support has been added to this library
with the recent addition of simplification routines and decision procedures.
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A Continuous Relaxation for Proving Discrete
ACL2 Theorems over Real Closed Fields
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The work described involves the use of a decision procedure for real closed
fields (RCF) to prove theorems originally formulated with rational-valued vari-
ables in the ACL2 theorem prover. From a theoretical perspective, we have iso-
lated an interesting nonlinear fragment of the rational number field that admits
a continuous relaxation. From a practical perspective, we have used some recent
additions to ACL2 aimed at interfacing with external tools [2] to implement our
procedure as a “trusted clause-processor” relying upon the QEPCAD-B [1] RCF
procedure as a trusted oracle.

Our theoretical result is a decidability proof for a fragment of the true first-
order theory of the rational number field. This result allows one to soundly relax
variables in sentences in this fragment to range over real numbers instead of
rational numbers. Specifically, we proved that any universal conjunctive sentence
in the language of ordered rings restricted to relation symbols drawn from {=
,≤,≥} holds over the rationals iff it holds over the reals. We showed this is true
even when both structures are extended by a collection of continuous real-valued
maps whose images over rational vectors are always rational-valued. Moreover,
we showed that decidability is preserved under such extensions as long as the
new maps are definable in the full language of ordered rings.

ACL2 is an especially nice setting for such a procedure, as proof obligations
in ACL2 are nearly always quantifier-free. Our practical result is the imple-
mentation of this proof procedure as an ACL2 clause-processor interfacing with
QEPCAD-B with the following extensions: First, goals with function and relation
symbols not in the language of ordered rings are generalized using techniques
often used in the SMT community such as Ackermannization. Second, we incor-
porate the simple “trivial relaxation” that says any purely universal sentence in
the language of ordered rings true over the reals is also true over the rationals.
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A Sound Semantics for OCamllight
Scott Owens
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OCamllight [1, 2] is a formal semantics for a substantial subset of the Ob-
jective Caml core language. It is written in Ott [3], which generates LATEX,
HOL, Coq, and Isabelle/HOL definitions, and it comprises a small-step opera-
tional semantics and a syntactic, non-algorithmic type system. A type soundness
theorem has been proved and mechanized in HOL-4. To ensure that the oper-
ational semantics accurately models Objective Caml, an executable version of
the semantics has been created (and proved equivalent in HOL to the original,
relational version) and tested on a number of small test cases.

We take a straightforward approach, formalizing the syntax of OCamllight as
a collection of inductive datatypes, and the OCamllight type system and oper-
ational semantics as a collection of inductive relations and recursive functions
directly over the source syntax. We hypothesize that this clear connection be-
tween the source language and its semantics will facilitate verification about
OCamllight programs, in addition to the present verification of type soundness.
OCamllight covers a large part of Objective Caml, but excludes the language’s
module and object systems. It includes:

– definitions
• variant data types (e.g., type t = I of int | C of char),
• record types (e.g., type t = {f : int; g : bool}),
• parametric type constructors (e.g., type ’a t = C of ’a),
• type abbreviations (e.g., type ’a t = ’a * int),
• mutually recursive combinations of the above (excepting abbreviations),
• exceptions, and values;

– expressions for type annotations, sequencing, and primitive values (functions,
lists, tuples, and records);

– with (record update), if, while, for, assert, try, and raise expressions;
– let-based polymorphism with an SML-style value restriction;
– mutually-recursive function definitions via let rec;
– pattern matching, with nested patterns, as patterns, and “or” (|) patterns;
– mutable references with ref, !, and :=;
– polymorphic equality (the Objective Caml = operator);
– 31-bit word semantics for ints (using an existing HOL library); and
– IEEE-754 semantics for floats (using an existing HOL library).

Most of the proof effort is a straightforward application of HOL’s tactic-based
proof mechanisms. The entire proof is around 11000 lines of tactic scripts. The
poster will present the OCamllight semantics and also lessons from the verifica-
tion process.

1. S. Owens. A sound semantics for OCamllight . In Proc. ESOP (2008).
2. S. Owens. OCamllight . http://www.cl.cam.ac.uk/~so294/ocaml.
3. P. Sewell, F. Zappa Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and

R. Strnǐsa. Ott: Effective tool support for the working semanticist. In Proc. ICFP
(2007).
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Systems on a chip (SoCs) are designed through a platform based approach: a
new SoC is built according to a generic architecture, using pre-designed param-
eterized modules and processor cores. To meet high performance, networks on a
chip (NoCs) constitute a promising communication architecture [1]. Moreover,
the current trend in the SoC design community is to raise the level of abstraction
and rely on verified parameterized library modules. This requirement will soon
extend to communication network kernels, yet a formal theory for this category
of functional modules is non existing today.

Our long term objective is to support the validation of abstract specifications
for NoCs, and the verification of their correct implementation by a parameter-
ized design. We propose a generic network model that encompasses protocols and
topologies, routing algorithms and scheduling policies, and applies to a wide va-
riety of architectures. We have expressed our model in the logic of an interactive
theorem prover to provide mechanized reasoning support.

The heart of the model is function GeNoC [2], which formalizes the inter-
actions between the three key constituents: interfaces, routing and scheduling.
Our model makes no assumption on the protocol, the topology, the routing algo-
rithm, or the scheduling policy. To abstract from any particular architecture, we
have identified essential properties (considered proof obligations or simply con-
straints) for each constituent. Those imply the overall correctness of GeNoC .
Hence, GeNoC and its global correctness are a meta-model and a meta-theorem
of all architectures satisfying instances of the proof obligations. The validation
of any particular architecture is reduced to the proof that each one of its con-
stituents satisfies the generic constraints. The implementation of our model in
an automated proof assistant provides a tool to specify and to validate high-level
NoCs specifications. For any concrete architecture, the corresponding instances
of the proof obligations are automatically generated. Our approach has been
demonstrated on realistic academic designs, as well as industrial designs.
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Internet connectivity has become an essential part of our infrastructure. This
connectivity is implemented with dynamic routing protocols. A large hurdle in
designing or extending protocols has been the difficulty of combining complex
routing policy languages with correctness proofs.

Metarouting [1] is an approach to routing protocol design and implementation
based on using a metalanguage to specify a routing language. The metalanguage
is designed so that properties important for specific algorithms (such as mono-
tonicity) can be automatically inferred, thus liberating the protocol designer from
this burden. The fundamental objects in the metalanguage include semigroups
and semirings, with potential properties including selectivity, commutativity, dis-
tributivity, and so on. These objects can be combined using constructors such as
products, lexicographic products and disjoint unions to produce complex struc-
tures.

Understanding the implicational theory of the properties inferred is very
useful for testing and debugging, meta-language design, and implementing prop-
erty inference rules. This poster describes our use of automated theorem prov-
ing to generate a database containing fragments of the implicational theory of
metarouting.

We are using a brute-force approach which enumerates subsets of properties
and applies resolution theorem provers to test each set’s consistency. Currently
we are using Prover9 and the E Equational theorem prover on a cluster of 28
CPUs. After running for about 1 month, we have created a database of over
2000 implicational fragments. This database is being used for automated testing
and debugging.
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Separation logic is an extension of Hoare logic that allows local reasoning
about mutable data structures. It’s been introduced by O’Hearn, Reynolds and
Yang in 2001 [1]. The main idea of separation logic is the usage of a spatial
conjunction p∗q that asserts that the formulas p and q hold on separate parts of
the state. This notion of separation allows local reasoning and an elegant solution
to aliasing problems. Moreover, it enables separation logic to be extended to
concurrent programs in a natural way [2].

Separation logic has become more and more popular during the last few
years. Besides ongoing research, there are several implementations. Smallfoot [3]
is one of the oldest and best documented. It is a tool that allows to automatically
verify specifications of programs written in a simple, imperative language. It uses
light-weight specifications about dynamically allocated pointer structures on a
heap that are expressed in a simple fragment of separation logic. Compared to
fragments of separation logic used by other tools or current papers, the fragment
used by Smallfoot is quite weak. However, it’s simplicity leads to decidable veri-
fication conditions and therefore allows Smallfoot to be completely automatic.

In this work, I formalised the verification conditions generated by Smallfoot

inside the interactive theorem prover HOL. Some documentation and the HOL

code can be found in the HOL repository1. There are correctness proofs for the
inferences used by Smallfoot and an implementation of a decision procedure for
the verification conditions inside HOL. Thus, this work is likely to increase the
trust in Smallfoot. Moreover, the decision procedure and the implementation of
the inference rules can be used as an interactive separation logic calculator.

In the future, I hope to extend this formalisation to a general framework for
separation logic in HOL.
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